# Density and deposition rates of amorphous $CVD-Si_3N_4$ including carbon

TOSHIO HIRAI, TAKASHI GOTO

The Research Institute for Iron, Steel and Other Metals, Tohoku University, Sendai 980, Japan

Amorphous Si<sub>3</sub>N<sub>4</sub> containing uniformly distributed carbon was prepared by chemical vapour deposition [Am. CVD-(Si<sub>3</sub>N<sub>4</sub>--C)] using SiCl<sub>4</sub> vapour and NH<sub>3</sub>, H<sub>2</sub> and C<sub>3</sub>H<sub>8</sub> gases at deposition temperatures ( $T_{dep}$ ) of 1100 to 1300 °C and at total gas pressures ( $P_{tot}$ ) of 30 to 70 torr. The density of Am.CVD-(Si<sub>3</sub>N<sub>4</sub>--C) is between 2.80 and 3.00 g cm<sup>-3</sup>, depending upon the deposition conditions. Rate of growth in thickness increases with increasing  $T_{dep}$  and  $P_{tot}$ , and has the largest value of 0.6 mm h<sup>-1</sup> at  $T_{dep} = 1300$  °C,  $P_{tot} = 70$  torr and propane gas flow rates [ $FR(C_3H_8)$ ] of 0 to 20 cm<sup>3</sup> min<sup>-1</sup>. The activation energy of the formation decreases from 38 to 20 kcal mol<sup>-1</sup> with increasing  $P_{tot}$  and  $FR(C_3H_8)$ .

## 1. Introduction

The chemical vapour deposition (CVD) technique can be used to synthesize not only powder and film but also bulk materials. Nickl and Braunmühl [1] and Jacobson [2] prepared Si-N-C system material using the CVD technique. Nickl and Braunmühl [1] have prepared deposits of Si-N-Cmaterial at temperatures between 1100 and 1300 °C using SiCl<sub>4</sub>, CCl<sub>4</sub>, H<sub>2</sub> and N<sub>2</sub> as the source gases and they examined the structure and morphology of the resulting deposits. They showed that the deposits are a mixture of Si + SiC + Si<sub>3</sub>N<sub>4</sub>, however, they did not report any properties of these deposits. Jacobson [2] prepared an amor-

TABLE I Deposition conditions

| Parameter                          |                    | Conditions                              |
|------------------------------------|--------------------|-----------------------------------------|
| Heating method                     |                    | Direct heating of<br>graphite substrate |
| Deposition temperature $(T_{dep})$ |                    | 1100, 1200,<br>1300° C                  |
| Total gas pressure ( $P_{tot}$ )   |                    | 39, 50, 70 torr                         |
| Gas flow rate (F                   | TR)                |                                         |
| H, gas                             | $FR(\mathbf{H}_2)$ | 700 cm <sup>3</sup> min <sup>-1</sup>   |
| SiCl <sub>4</sub> vapour           | $FR(SiCl_4)$       | 170 cm <sup>3</sup> min <sup>-1</sup>   |
| NH <sub>3</sub> gas                | $FR(NH_3)$         | 60 cm <sup>3</sup> min <sup>-1</sup>    |
| C, H, gas                          | $FR(C, H_s)$       | 0, 10, 25, 40, 70                       |
| 5 5 -                              | 5 6                | 100 cm <sup>3</sup> min <sup>-1</sup>   |
| Deposition time $(t)$              |                    | 0.5 to 8 h                              |

phous Si–N–C system powder using SiCl<sub>4</sub>, NH<sub>3</sub>,  $N_2$  and CH<sub>4</sub>, and showed that the powder is useful as a starting material for SiAlON.

The present authors have previously reported the CVD conditions for the formation of platelike amorphous Si<sub>3</sub>N<sub>4</sub> containing carbon [Am. CVD-Si<sub>3</sub>N<sub>4</sub>-C)] [3]. This paper describes the density, deposition rate and deposition mechanism of Am.CVD-(Si<sub>3</sub>N<sub>4</sub>-C).

## 2. Experimental procedures

#### 2.1. Preparation of amorphous $Si_3N_4$ -C

The Am.CVD- $(Si_3N_4-C)$  was prepared on a directly heated graphite substrate by the CVD technique using SiCl<sub>4</sub>, NH<sub>3</sub>, H<sub>2</sub> and C<sub>3</sub>H<sub>8</sub>. The detailed procedures for the above sample preparation have been reported previously [3]. The deposition conditions of Am.CVD- $(Si_3N_4-C)$  are summarized in Table I. The carbon content is shown in Fig. 1.

## 2.2. Density measurements

The samples, together with the graphite substrate, were cut to approximately 10 mm by 10 mm using a diamond cutter. The graphite substrate was then removed by SiC abrasive and the specimens were ultrasonically cleaned in acetone. The density was measured by the displacement technique using toluene.



Figure 1 Carbon content of Am.CVD-(Si<sub>3</sub>  $N_4$  -C).



Figure 2 Effect of propane gas flow rate  $[FR(C_3H_8)]$  on density (D).

### 2.3. Thickness measurements

The thickness of Am.CVD-(Si<sub>3</sub>N<sub>4</sub>-C) was determined from the cross-section of the prepared specimens. The final thickness was obtained by averaging the values measured at about ten points on the specimen by using a travelling microscope (accuracy: 0.01 mm). The variation of the thickness was within a few per cent of the mean.

## 2.4. Deposition rates

Since the thickness (x) of the deposit increases linearly with the deposition time (t) [4], (x/t) is defined as the growth rate of the thickness. The product of the density (D) and the growth rate of the thickness (x/t), D(x/t), is defined as the deposition rate constant (k). The value of k represents the weight increase of Am. CVD- $(Si_3N_4-C)$  per unit time per unit surface area of the substrate.

# 3. Results

### 3.1. Density

Fig. 2 shows the relationship between the density (D) and the propane gas flow rate  $[FR(C_3H_8)]$  at  $T_{dep} = 1100$  to 1300 °C. As shown in Fig. 2, the measured density at  $FR(C_3H_8) = 0$  to  $40 \text{ cm}^3$  $\min^{-1}$  is almost constant at each  $T_{dep}$ . The density above  $FR(C_3H_8) = 40 \text{ cm}^3 \text{ min}^{-1}$  decreases with increasing value of  $FR(C_3H_8)$ , in such a way that the extent of the decrease is larger at the higher  $T_{dep}$ . The variation of D with  $T_{dep}$  at  $FR(C_3H_8) =$ 0, 40, 70 and 100  $\text{cm}^3 \text{min}^{-1}$  is presented in Fig. 3. As shown in Fig. 3, D increases with increasing  $T_{dep}$ , although the effect of  $T_{dep}$  on D decreases with increasing  $FR(C_3H_8)$  in the range  $FR(C_3H_8) = 0$  to  $70 \text{ cm}^3 \text{min}^{-1}$ . At  $FR(C_3H_8) =$  $100 \,\mathrm{cm^3 \, min^{-1}}$ , D is little affected by  $T_{\mathrm{dep}}$  and indicates a constant value of about  $2.80 \,\mathrm{g \, cm^{-3}}$ .

## 3.2. Growth rate of the thickness

Fig. 4. illustrates the effect of  $FR(C_3H_8)$  on the growth rate of the thickness (x/t) at  $T_{dep} = 1100$  to 1300 °C. At  $T_{dep} = 1100$  and 1200 °C, (x/t) is little affected by  $FR(C_3H_8)$  at  $P_{tot} = 30$  torr, however, (x/t) decreases with increasing  $FR(C_3H_8)$  at both  $P_{tot} = 50$  and 70 torr. At  $T_{dep} = 1300$  °C, (x/t) decreases with increasing  $FR(C_3H_8)$  at every  $P_{tot}$ .

## 3.3 Deposition rate constant

Fig. 5 indicates the Arrhenius plot of the deposition rate constant (k) at  $FR(C_3H_8) = 0$ , 40, 70 and



Figure 3 Effect of deposition temperature  $(T_{dep})$  on density (D).

 $100 \text{ cm}^3 \text{ min}^{-1}$ . The slope of each line in Fig. 5 decreases with increasing  $P_{\text{tot}}$  and  $FR(C_8H_8)$ . The values of the activation energy obtained from these slopes are represented in Table II.

# 4. Discussion

#### 4.1. Density

It has been reported that the density of Am.CVD-Si<sub>3</sub>N<sub>4</sub> varies with deposition conditions [4-7]. The results for Am.CVD-Si<sub>3</sub>N<sub>4</sub> in the present work at  $FR(C_3H_8) = 0 \text{ cm}^3 \text{min}^{-1}$  are compared with those of the previous works [4-7] in Fig. 6. The reasons for the difference among these results shown in Fig. 6 is not yet known.

Fig. 7 represents the relationship between density (D) and carbon content at various  $T_{dep}$ . The values of D decrease linearly with increasing carbon content at each  $T_{dep}$ . The density of carbon



Propane Gas Flow Rate ,  $FR(C_3H_8)$  (cm<sup>3</sup> min<sup>-1</sup>)

Figure 4 Effect of propane gas flow rate  $[FR(C_3H_8)]$  on the thickness growth rate (x/t).

is calculated to be about  $1.6 \text{ g cm}^{-3}$  at each  $T_{dep}$ assuming that the density of Am.CVD-(Si<sub>3</sub>N<sub>4</sub>--C) is represented by the linear combination of the density of Am.CVD-Si<sub>3</sub>N<sub>4</sub> and that of carbon. The lines in Fig. 7 indicate the calculated value using the density of carbon to be  $1.6 \text{ g cm}^{-3}$ . However, the density value of  $1.6 \text{ g cm}^{-3}$  is similar to that of pyrolytic carbon obtained at  $T_{dep} =$ 1600 to  $1800^{\circ}$ C (1.3 to  $1.5 \text{ g cm}^{-3}$ ) [8] but is smaller than that obtained at  $T_{dep} = 1100$  to  $1300^{\circ}$ C (2.1 to  $2.2 \text{ g cm}^{-3}$ ) [8].

The studies on the structure of  $Am.CVD-Si_3N_4$  matrix and the existence state of the carbon are currently underway.

#### 4.2. Deposition rate and activation energy

The growth rate of the thickness at  $FR(C_3H_8) = 0 \text{ cm}^3 \text{ min}^{-1}$  increases with increasing  $T_{dep}$  and  $P_{tot}$ . Previous work by the authors [4] indicated that (x/t) has a maximum value in the range  $P_{tot} = 40$  to 60 torr at a given  $T_{dep}$ . This result is inter-



Figure 5 Arrhenius plot of the deposition rate constant (k).

preted as follows; when the source gases, issuing from some distance above the substrate, flow around the substrate down its length, the gas flow near the substrate changes from downward forced convection flow to upward natural convection flow in the range  $P_{tot} = 40$  to 60 torr. However, such an (x/t) maximum was not observed in the present work, because the source gases were supplied vertically upward on to the surface of the substrate and thus no change in the nature of the

| P <sub>tot</sub><br>(torr) | $\frac{FR(C_3 H_8)}{(cm^3 min^{-1})}$ | Activation energy<br>(kcal mol <sup>-1</sup> ) |
|----------------------------|---------------------------------------|------------------------------------------------|
| 30                         | 0                                     | 38                                             |
| 30                         | 40                                    | 35                                             |
| 30                         | 70                                    | 34                                             |
| 30                         | 100                                   | 33                                             |
| 50                         | 0                                     | 28                                             |
| 50                         | 40                                    | 26                                             |
| 50                         | 70                                    | 26                                             |
| 50                         | 100                                   | 24                                             |
| 70                         | 0                                     | 25                                             |
| 70                         | 40                                    | 24                                             |
| 70                         | 70                                    | 23                                             |
| 70                         | 100                                   | 20                                             |

TABLE II Activation energies of  $Am.CVD-Si_3N_4$  and  $Am.CVD-(Si_3N_4-C)$  formation.

gas flow as described above occurred at each  $P_{\text{tot}}$ . The result of the present work is compared with that obtained previously by the authors [4] in Fig. 8.

As shown in Table II, the activation energy (E) decreases with increasing  $P_{tot}$  and  $FR(C_3H_8)$ . It is speculated that this decrease is caused by the formation of by-products such as Si(NH)<sub>2</sub> and NH<sub>4</sub> Cl powders [9] which are easily formed with increasing  $T_{dep}$ ,  $P_{tot}$  and FR(C<sub>3</sub>H<sub>8</sub>).

#### 5. Conclusions

(1) The density of Am.CVD-(Si<sub>3</sub>N<sub>4</sub>-C) increases with increasing  $T_{dep}$  from 2.86 to 3.00 g cm<sup>-3</sup> and it is little affected by  $FR(C_3H_8)$  in the range  $FR(C_3H_8) = 0$  to  $40 \text{ cm}^3 \text{ min}^{-1}$ . Above  $FR(C_3H_8) = 40 \text{ cm}^3 \text{ min}^{-1}$ , the density decreases with increasing  $FR(C_3H_8)$ .



Figure 6 Density of Am.CVD-Si<sub>3</sub>N<sub>4</sub>. Present work and previous works [4-7].



Figure 7 The relationship between carbon content and density (D).



Figure 8 The thickness growth rate (x/t) of Am.CVD-Si<sub>3</sub>N<sub>4</sub>. Present work and previous work [4].

(2) The density decreases with increasing carbon content at each  $T_{dep}$ . At  $T_{dep} = 1300$  °C, the density varies from about 3.00 to 2.75 g cm<sup>-3</sup> with an increase in carbon content from about 0 to 10 wt%.

(3) The growth rate of the thickness (x/t) increases with increasing  $T_{dep}$  and  $P_{tot}$ . The value of (x/t) is not affected by  $FR(C_3H_8)$  at  $P_{tot} = 30$  torr and at  $T_{dep} = 1100$  and  $1200^{\circ}$ C. (x/t) decreases with increasing  $FR(C_3H_8)$  at  $P_{tot} = 50$  and 70 torr at  $T_{dep} = 1100$  and  $1200^{\circ}$ C, and at every  $P_{tot}$  at  $T_{dep} = 1300^{\circ}$ C. The largest value of (x/t) of about 0.6 mm h<sup>-1</sup> was obtained at  $T_{dep} = 1300^{\circ}$  C,  $P_{tot} = 70$  torr and  $FR(C_3H_8) = 0$  to 20 cm<sup>3</sup> min<sup>-1</sup>.

(4) The activation energy decreases from 38 to 20 kcal mol<sup>-1</sup> with increasing  $P_{\text{tot}}$  and  $FR(C_3H_8)$ .

#### Acknowledgement

This research was supported in part by a Grant-in-

Aid for Scientific Research from the Ministry of Education, Science and Culture under Contract No. 504508.

#### References

- 1. J. J. NICKL and C. BRAUNMÜHL, J. Less-Common Met. 37 (1974) 317.
- 2. H. W. JACOBSON, US patent 4 036 653, July (1977).
- 3. T. HIRAI and T. GOTO, J. Mater. Sci. 16 (1981) 17.
- 4. K. NIIHARA and T. HIRAI, *ibid.* **11** (1976) 604.
- A. C. AIREY, S. CLARKE and P. POPPER, Proc. Brit. Ceram. Soc. 22 (1973) 305.
- 6. T. L. CHU, C. H. LEE and G. A. GRUBER, J. *Electrochem. Soc.* 114 (1967) 717.
- 7. T. HIRAJ, K. NIIHARA and T. GOTO, J. Japan Inst. Met. 41 (1977) 358.
- A. R. G. BROWN, D. CLARK and J. EASTA-BROOK, J. Less-Common Met. 1 (1959) 94.
- 9. K. S. MAZDIYASNI and C. M. COOKE, J. Amer. Ceram. Soc. 56 (1973) 628.

Received 13 March and accepted 26 March 1981.